YEAR 11-12
VCE Chemistry
Subject Area
Science
VCE Units
1-4
About the Course
The study of VCE Chemistry involves investigating and analysing the composition and behaviour of matter, and the chemical processes involved in producing useful materials for society in ways that minimise adverse effects on human health and the environment. Chemistry underpins the generation of energy for use in homes and industry, the maintenance of clean air and water, the production of food, medicines and new materials, and the treatment of wastes.
An important feature of undertaking a VCE science study is the opportunity for students to engage in a range of scientific investigation methodologies, to develop key science skills, and to interrogate the links between knowledge, theory and practice. Students work collaboratively as well as independently on a range of scientific investigations involving controlled experiments, fieldwork, case studies, classification and identification, modelling, simulations, literature reviews, and the development of a product, process or system. Knowledge and application of the safety considerations, including use of safety data sheets, and ethical guidelines associated with undertaking investigations is integral to the study of VCE Chemistry.
As well as increasing their understanding of scientific processes, students develop insights into how knowledge in chemistry has changed, and continues to change, in response to new evidence, discoveries and thinking. They explore the impact of chemistry on their own lives, and on society and the environment. They develop capacities that enable them to critically assess the strengths and limitations of science, respect evidence-based conclusions and gain an awareness of the ethical contexts of scientific endeavours. Students consider how science is connected to innovation in addressing contemporary chemistry-based challenges.
UNIT 1
How can the diversity of materials be explained?
Area of Study 1: How do the chemical structures of materials explain their properties and reactions?
In this area of study students focus on elements as the building blocks of useful materials. They investigate the structures, properties and reactions of carbon compounds, metals and ionic compounds, and use chromatography to separate the components of mixtures. They use metal recycling as a context to explore the transition in manufacturing processes from a linear economy to a circular economy.
The selection of learning contexts should allow students to develop practical techniques to investigate the properties and reactions of various materials. Students develop their skills in the use of scientific equipment and apparatus. Students may conduct flame tests to identify elements in the periodic table. They may model covalent, metallic and ionic structures using simple ball-and-stick models and may use computer simulations of the three-dimensional representations of molecules and lattices to better understand structures. They use solubility tables to experimentally identify unknown ions in solution. They respond to challenges such as developing their own reactivity series by reacting samples of metals with acids, oxygen and water.
Area of Study 2: How are materials quantified and classified?
In this area of study students focus on the measurement of quantities in chemistry and the structures and properties of organic compounds, including polymers.
The selection of learning contexts should allow students to develop practical techniques to quantify amounts of substances and to investigate the chemistry of organic compounds. Students develop their skills in the use of scientific equipment and apparatus. They perform calculations based on the generation of primary data, such as determining the empirical formula of an ionic compound or hydrated salt, and consider how the quality of data generated in experiments can be improved. They may construct models to visualise the similarities and differences between families of organic compounds. Students may use common substances in their experiments such as making glue from milk. They may investigate the environmental impact of the production of polymers: for example, the recycling of biodegradable polymers derived from natural resources such as biopolyethene (Bio-PE). Students respond to challenges such as investigating how changing formulations for polymers affects their structure and properties: for example, by creating slime.
Area of Study 3: How can chemical principles be applied to create a more sustainable future?
Knowledge of the structure and properties of matter has developed over time through scientific and technological research, leading to the production of a range of useful chemicals, materials and products for society. Chemists today, through sustainable practices, seek to improve the efficiency with which natural resources are used to meet human needs for chemical products and services. Chemists also learn from Aboriginal and Torres Strait Islander peoples about the ways that they sustainably modify and process raw materials using techniques developed over millennia. Sustainability requires innovation in designing and discovering new chemicals, production processes and product management systems that will provide increased yield or performance at a lower cost while meeting the goals of protecting and enhancing human health and the environment.
In this area of study students undertake an investigation involving the selection and evaluation of a recent discovery, innovation, advance, case study, issue or challenge linked to the knowledge and skills developed in Unit 1 Area of Study 1 and/or Area of Study 2, including consideration of sustainability concepts (green chemistry principles, sustainable development and the transition towards a circular economy).
UNIT 2
How do chemical reactions shape the natural world?
Area of Study 1: How do chemicals interact with water?
In this area of study students focus on understanding the properties of water and investigating acid-base and redox reactions. They explore water’s properties, including its density, specific heat capacity and latent heat of vaporisation. They write equations for acid-base and redox reactions, and apply concepts including pH as a measure of acidity. They explore applications of acid-base reactions and redox reactions in society.
The selection of learning contexts should allow students to develop practical techniques to investigate the properties of water and acid-base and redox reactions. Students develop their skills in the use of scientific equipment and apparatus. They may demonstrate their understanding of concentration using coloured solutions such as ammonium molybdate. Students explore pH: for example, by making their own indicators from natural materials, developing their own pH scale and comparing the accuracy of their indicators with commercial indicators. They may investigate redox reactions by comparing corrosion rates of iron in tap water and sea water or building simple cells to power a diode. They respond to challenges such as investigating the action of soda water on seashells and linking their findings to socio-scientific issues such as ocean acidification.
Area of Study 2: How are chemicals measured and analysed?
In this area of study students focus on the analysis and quantification of chemical reactions involving acids, bases, salts and gases. They measure the solubility of substances in water, explore the relationship between solubility and temperature using solubility curves, and learn to predict when a solute will dissolve or crystallise out of solution. They quantify amounts in chemistry using volumetric analysis, application of the ideal gas equation, stoichiometry and calibration curves.
The selection of learning contexts should allow students to develop practical techniques to investigate substances that may be dissolved in water or found in soils, particularly salts, acids and bases, as well as gases. Students develop their skills in the use of scientific equipment and apparatus. They use precipitation reactions to purify water: for example, by using iron or aluminium compounds to precipitate and remove phosphorus from wastewater. They perform acid-base titrations, such as comparing the ethanoic acid concentrations of vinegar, mayonnaise and tomato sauce. They construct calibration curves to analyse unknown concentrations of substances, such as the amount of nitrates or phosphates in water or soil samples. Students respond to challenges such as determining the set of standards required in setting up a calibration curve in colorimetry.
Area of Study 3: How do quantitative scientific investigations develop our understanding of chemical reactions?Â
Many of the 17 goals in the United Nations’ 2030 Agenda for Sustainable Development relate to ensuring that people have access to potable water, clean air and good quality soil to meet their basic needs. The quality of water, air and soil must be monitored closely to ensure that human health and the environment are not compromised.
In this area of study students adapt or design and then conduct a scientific investigation related to chemical equations and/or analysis, which must include the generation of primary data. They develop a research question related to the production of gases, acid-base or redox reactions or the analysis of substances in water, and adapt or design and then conduct a scientific investigation to generate appropriate quantitative data. Students organise and interpret the data and reach a conclusion in response to their research question.
Research questions may relate to different scientific methodologies. Pattern seeking may be utilised in investigating questions such as ‘Is there a relationship between salinity concentration and the rate of rusting of iron?’. Controlled experiments may be designed to investigate questions such as ‘Why is isopropyl alcohol measured as %(v/v) while chlorine bleach is measured in ppm, and what concentrations of isopropyl alcohol and chlorine bleach are required to disinfect surfaces?’. Students may also investigate product, process or system development, such as formulating a UV-stable natural indicator.
The student-adapted or student-designed scientific investigation relates to knowledge and skills developed in Unit 2 Area of Study 1 and/or Area of Study 2.
UNIT 3
How can design and innovation help to optimise chemical processes?
Area of Study 1: What are the current and future options for supplying energy?
In this area of study students focus on analysing and comparing a range of fossil fuels and biofuels as energy sources for society, and carbohydrates, proteins and lipids as fuel sources for the body. They write balanced thermochemical equations for the combustion of various fuels. The amounts of energy and gases produced in combustion reactions are quantified using stoichiometry. They explore how energy can be sustainably produced from chemicals to meet the needs of society while minimising negative impacts on the environment.
The selection of learning contexts should allow students to develop practical techniques to investigate how energy from fuels can be obtained and measured, and to determine the efficiency of different fuels and electrochemical cells as sources of energy. Students develop their skills in the use of scientific equipment and apparatus. They may measure energy released in combustion reactions through quantitative calorimetry experiments and may compare amounts of energy released in different fuels, such as methane, alcohols, waxes and foods. They design, construct and test galvanic and fuel cells, and account for differences between experimental findings and predictions made by using the electrochemical series. Students may work collaboratively to construct electrochemical half-cells and experiment with different combinations of half-cells to develop their own electrochemical series. Students respond to challenges such as designing an electrochemical cell that generates the most energy under laboratory conditions using a limited range of supplied chemicals and materials.
Area of Study 2: How can the rate and yield of chemical reactions be optimised?
In this area of study, students explore the factors that affect the rate and yield of equilibrium and electrolytic reactions involved in producing important materials for society. Reactants and products in chemical reactions are treated qualitatively through the application of Le Chatelier’s principle and quantified using equilibrium expressions, reaction quotients and Faraday’s Laws. Students explore the sustainability of different options for producing useful materials for society.
The selection of learning contexts should allow students to develop practical techniques to investigate equilibrium and electrolysis. Students develop their skills in the use of scientific equipment and apparatus. They investigate reaction rates including the measurement of mass, gas volumes and time. They use an equilibrium system, such as iron(III) thiocyanate, to predict and test the effect of different changes to the system. They investigate the effect of catalysts on reaction rates, such as comparing the rate of decomposition of hydrogen peroxide using organic and inorganic catalysts. Students explore the application of electrolysis in the manufacture of useful products through experiments such as electroplating and anodising. They model and explain the operation of secondary cells: for example, those in portable devices such as laptops or cell phones. Students respond to challenges such as predicting and testing the optimum conditions under which a selected reaction can produce the highest product yield.
UNIT 4
How are carbon-based compounds designed for purpose?
Area of Study 1: How are organic compounds categorised and synthesised?
In this area of study students focus on the structure, naming, properties and reactions of organic compounds, including the chemical reactions associated with the metabolism of food. They explore how synthetic organic compounds can be produced more sustainably for use in society.
The selection of learning contexts should allow students to develop practical techniques to investigate organic structures and reactions. Students develop their skills in the use of scientific equipment and apparatus. They may construct models to explore organic structures, including isomers. Students may compare the properties of biodiesels produced using different oils, or may investigate organic reaction pathways such as the synthesis of esters used in food flavourings. They may investigate food metabolism by hydrolysing different types of plant starches. Students respond to challenges such as how to improve the atom economy of a selected chemical reaction or reaction pathway.
Area of Study 2: How are organic compounds analysed and used?
In this area of study students focus on laboratory and instrumental analyses of organic compounds, and the function of some organic compounds as medicines. They use distillation to separate mixtures, use volumetric analysis to calculate redox quantities, and explore how instrumental analysis is used to ensure the quality of consumer products. Students explain how some medicines that bind to the active sites of enzymes function by inhibiting the enzymes’ mode of action.
The selection of learning contexts should allow students to develop practical techniques to analyse organic compounds. Students develop their skills in the use of scientific equipment and apparatus. They may perform qualitative tests to identify features of organic compounds, such as the identification of functional groups in an unknown compound. Students may perform quantitative analyses including redox titrations to determine concentrations and quantities of substances, such as the amount of Vitamin C in fruits. They design and improve on experiments such as the testing of the viscosity of alcohols. They respond to challenges such as the identification of a molecule using primary data from analytical techniques used in the laboratory or secondary data obtained from spectroscopy. Students may use distillation to extract and purify the natural organic compounds in plants, such as extracting limonene from orange peel.
Area of Study 3: How is scientific inquiry used to investigate the sustainable production of energy and/or materials?
Students undertake a student-designed scientific investigation in either Unit 3 or Unit 4, or across both Units 3 and 4. The investigation involves the generation of primary data related to the production of energy and/or chemicals and/or the analysis or synthesis of organic compounds, and should be inspired by a contemporary chemical challenge or issue. The investigation draws on knowledge and related key science skills developed across Units 3 and 4 and is undertaken by students in the laboratory and/or in the field.
When undertaking the investigation students are required to apply the key science skills to develop a question, state an aim, formulate a hypothesis and plan a course of action to answer the question, while complying with safety and ethical guidelines. Students then undertake an experiment to generate primary quantitative data, analyse and evaluate the data, identify limitations of data and methods, link experimental results to scientific ideas, discuss implications of the results, and draw a conclusion in response to the question. The presentation format for the investigation is a scientific poster constructed according to the structure outlined on page 14. A logbook is maintained by students for recording, assessment and authentication purposes.